380 research outputs found

    Calculations of spin-disorder resistivity from first principles

    Get PDF
    Spin-disorder resistivity of Fe and Ni is studied using the noncollinear density functional theory. The Landauer conductance is averaged over random disorder configurations and fitted to Ohm's law. The distribution function is approximated by the mean-field theory. The dependence of spin-disorder resistivity on magnetization in Fe is found to be in excellent agreement with the results for the isotropic s-d model. In the fully disordered state, spin-disorder resistivity for Fe is close to experiment, while for fcc Ni it exceeds the experimental value by a factor of 2.3. This result indicates strong magnetic short-range order in Ni at the Curie temperature.Comment: 3 pages, 3 figure

    The 3d-to-4s-by-2p highway to superconductivity in cuprates

    Full text link
    High-temperature superconductors are nowadays found in great variety and hold technological promise. It is still an unsolved mystery that the critical temperature T_c of the basic cuprates is so high. The answer might well be hidden in a conventional corner of theoretical physics, overlooked in the recent hunt for exotic explanations of new effects in these materials. A forgotten intra-atomic s-d two-electron exchange in the Cu atom is found to provide a strong (~eV) electron pairing interaction. A Bardeen-Cooper-Schrieffer approach can explain the main experimental observations and predict the correct d_{x^2-y^2} symmetry of the gap.Comment: 4 pages, 3 figures, LaTeX2

    Curie Temperatures for Three-Dimensional Binary Ising Ferromagnets

    Full text link
    Using the Swendsen and Wang algorithm, high accuracy Monte Carlo simulations were performed to study the concentration dependence of the Curie temperature in binary, ferromagnetic Ising systems on the simple-cubic lattice. Our results are in good agreement with known mean-field like approaches. Based on former theoretical formulas we propose a new way of estimating the Curie temperature of these systems.Comment: nr. of pages:13, LATEX. Version 2.09, Scientific Report :02/1994 (Univ. of Bergen, Norway), 7 figures upon reques

    The string model of the Cooper pair in the anisotropic superconductor

    Full text link
    The analogy between the Cooper pair in high temperature superconductor and the quark-antiquark pair in quantum chromodynamics (QCD) is proposed. In QCD the nonlinear chromodynamical field between a quark and an antiquark is confined to a tube. So we assume that there is the strong interaction between phonons which can confine them to some tube too. This tube is described using the nonlinear Schr\"odinger equation. We show that it has an infinite spectrum of axially symmetric (string) solutions with negative finite linear energy density. The one-dimensional nonlinear Schr\"odinger equation has a finite spectrum (hence, it has a steady-state) which describes the Cooper pair squezeed between anisotropy planes in the superconductor. It is shown that in this model the transition temperature is approximately 45 K.Comment: final version, Latex, 9p, to be published in Phys. Rev.

    Magnetic light

    Full text link
    In this paper we report on the observation of novel and highly unusual magnetic state of light. It appears that in small holes light quanta behave as small magnets so that light propagation through such holes may be affected by magnetic field. When arrays of such holes are made, magnetic light of the individual holes forms novel and highly unusual two-dimensional magnetic light material. Magnetic light may soon become a great new tool for quantum communication and computing.Comment: Submitted to Phys.Rev.Lett., 3 figure

    Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers

    Full text link
    We report on the first observation of a pronounced re-entrant superconductivity phenomenon in superconductor/ferromagnetic layered systems. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d_{CuNi}=13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum

    Ballistic and Diffuse Electron Transport in Nanocontacts of Magnetics

    Full text link
    The transition from the ballistic electron transport to the diffuse one is experimentally observed in the study of the magnetic phase transition in Ni nanocontacts with different sizes. It is shown that the voltage UCU_C needed for Joule heating of the near-contact region to the critical temperature does not depend on the contact size only in the diffuse mode. For the ballistic contact it increases with decrease in the nanocontact size. The reduction of the transport electron mean free path due to heating of NCs may result in change of the electron transport mode from ballistic to diffusive one.Comment: 7 pages, 2 figures accepted for the publication in JETPL (http://www.jetpletters.ac.ru). Will be published on 25 april 201

    On the line shape of the electrically detected ferromagnetic resonance

    Full text link
    This work reviews and examines two particular issues related with the new technique of electrical detection of ferromagnetic resonance (FMR). This powerful technique has been broadly applied for studying magnetization and spin dynamics over the past few years. The first issue is the relation and distinction between different mechanisms that give rise to a photovoltage via FMR in composite magnetic structures, and the second is the proper analysis of the FMR line shape, which remains the "Achilles heel" in interpreting experimental results, especially for either studying the spin pumping effect or quantifying the spin Hall angles via the electrically detected FMR.Comment: 14 pages, 9 figure

    Ultrafast demagnetization in the sp-d model: a theoretical study

    Full text link
    We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of localized spins that are coupled to carriers' spins by sp-d exchange interaction. A prominent example of a class of materials falling into this category are ferromagnetic (III,Mn)V semiconductors, in which ultrafast demagnetization has been recently observed. In the proposed model light excitation heats up the population of carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the carriers. We derive the Master equation for the density matrix of a localized spin interacting with the hot carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of polarization between the localized and itinerant spins leading to significant demagnetization of the localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure

    Thermal Casimir Force between Magnetic Materials

    Full text link
    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09, Norman, OK, September 21-25, 200
    corecore